Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 77

Answer

$$ - \ln \left( {\frac{{1 + \sqrt {1 + {e^{2x}}} }}{{{e^x}}}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{\sqrt {1 + {e^{2x}}} }}} dx \cr & {\text{Let }}u = {e^x},{\text{ }}du = {e^x}dx,{\text{ }}dx = \frac{1}{{{e^x}}}du = \frac{1}{u}du \cr & {\text{Substitute}} \cr & \int {\frac{1}{{\sqrt {1 + {e^{2x}}} }}} dx = \int {\frac{1}{{\sqrt {1 + {u^2}} }}} \left( {\frac{1}{u}} \right)du \cr & = \int {\frac{1}{{u\sqrt {1 + {u^2}} }}} du \cr & {\text{Use Theorem 5}}{\text{.20 }}\int {\frac{{du}}{{u\sqrt {{a^2} + {u^2}} }} = - \frac{1}{a}\ln \frac{{a + \sqrt {{a^2} + {u^2}} }}{{\left| u \right|}} + C} \cr & \int {\frac{1}{{u\sqrt {1 + {u^2}} }}} du = - \ln \left( {\frac{{1 + \sqrt {1 + {u^2}} }}{{\left| u \right|}}} \right) + C \cr & {\text{Write in terms of }}x \cr & = - \ln \left( {\frac{{1 + \sqrt {1 + {{\left( {{e^x}} \right)}^2}} }}{{\left| {{e^x}} \right|}}} \right) + C \cr & = - \ln \left( {\frac{{1 + \sqrt {1 + {e^{2x}}} }}{{{e^x}}}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.