Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 87

Answer

$$y = \frac{1}{4}{\sin ^{ - 1}}\left( {\frac{{4x - 1}}{9}} \right) + C$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{1}{{\sqrt {80 + 8x - 16{x^2}} }} \cr & {\text{Separating variables}} \cr & dy = \frac{1}{{\sqrt {80 + 8x - 16{x^2}} }}dx \cr & {\text{Completing the square}} \cr & dy = \frac{1}{{\sqrt {81 - \left( {16{x^2} - 8x + 1} \right)} }}dx \cr & dy = \frac{1}{{\sqrt {81 - {{\left( {4x - 1} \right)}^2}} }}dx \cr & {\text{Let }}u = 4x - 1,{\text{ }}du = 4dx,{\text{ }}dx = \frac{1}{4}du \cr & dy = \frac{1}{{\sqrt {81 - {u^2}} }}\left( {\frac{1}{4}} \right)du \cr & {\text{Integrate both sides}} \cr & \int {dy} = \frac{1}{4}\int {\frac{1}{{\sqrt {{{\left( 9 \right)}^2} - {u^2}} }}} du \cr & y = \frac{1}{4}{\sin ^{ - 1}}\left( {\frac{u}{9}} \right) + C \cr & {\text{Substitute }}u = 4x - 1 \cr & y = \frac{1}{4}{\sin ^{ - 1}}\left( {\frac{{4x - 1}}{9}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.