Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 78

Answer

$$\frac{1}{{12}}\ln \left| {\frac{{3 + {x^2}}}{{3 - {x^2}}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{9 - {x^4}}}} dx{\text{ can be written as }}\int {\frac{x}{{9 - {{\left( {{x^2}} \right)}^2}}}} dx \cr & {\text{Let }}u = {x^2},{\text{ }}du = 2xdx,{\text{ }}dx = \frac{1}{{2x}}du \cr & {\text{Substitute}} \cr & \int {\frac{x}{{9 - {{\left( {{x^2}} \right)}^2}}}} dx = \int {\frac{x}{{9 - {u^2}}}} \left( {\frac{1}{{2x}}} \right)du \cr & = \frac{1}{2}\int {\frac{1}{{9 - {u^2}}}} du \cr & {\text{Use Theorem 5}}{\text{.20 }}\int {\frac{{du}}{{{a^2} - {u^2}}} = \frac{1}{{2a}}\ln \left| {\frac{{a + u}}{{a - u}}} \right| + C} \cr & = \frac{1}{2}\left( {\frac{1}{{2\left( 3 \right)}}\ln \left| {\frac{{3 + u}}{{3 - u}}} \right|} \right) + C \cr & = \frac{1}{{12}}\ln \left| {\frac{{3 + u}}{{3 - u}}} \right| + C \cr & {\text{Write in terms of }}x \cr & = \frac{1}{{12}}\ln \left| {\frac{{3 + {x^2}}}{{3 - {x^2}}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.