Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 81

Answer

$$\frac{1}{4}\ln \left| {\frac{{x - 4}}{x}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{ - 1}}{{4x - {x^2}}}} dx \cr & {\text{Completing the square}} \cr & 4x - {x^2} = - \left( {{x^2} - 4x + 4 - 4} \right) \cr & 4x - {x^2} = - \left[ {\left( {{x^2} - 4x + 4} \right) - 4} \right] = - \left[ {{{\left( {x - 2} \right)}^2} - 4} \right] \cr & 4x - {x^2} = 4 - {\left( {x - 2} \right)^2} \cr & {\text{Then,}} \cr & \int {\frac{{ - 1}}{{4x - {x^2}}}} dx = \int {\frac{{ - 1}}{{4 - {{\left( {x - 2} \right)}^2}}}} dx \cr & = \int {\frac{1}{{{{\left( {x - 2} \right)}^2} - 4}}} dx \cr & {\text{Let }}u = x - 2,{\text{ }}du = dx \cr & = \int {\frac{1}{{{u^2} - 4}}} du \cr & {\text{Use Theorem 5}}{\text{.20 }}\int {\frac{{du}}{{{u^2} - {a^2}}} = } \frac{1}{{2a}}\ln \left| {\frac{{u - a}}{{u + a}}} \right| + C \cr & \int {\frac{1}{{{u^2} - 4}}} du = \frac{1}{{2\left( 2 \right)}}\ln \left| {\frac{{u - 2}}{{u + 2}}} \right| + C \cr & {\text{Write in terms of }}x \cr & = \frac{1}{4}\ln \left| {\frac{{\left( {x - 2} \right) - 2}}{{\left( {x - 2} \right) + 2}}} \right| + C \cr & = \frac{1}{4}\ln \left| {\frac{{x - 4}}{x}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.