Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 71

Answer

$$\frac{{dy}}{{dx}} = - \frac{{2{{\operatorname{csch} }^{ - 1}}x}}{{\left| x \right|\sqrt {1 + {x^2}} }}$$

Work Step by Step

$$\eqalign{ & y = {\left( {{{\operatorname{csch} }^{ - 1}}x} \right)^2} \cr & {\text{Differentiate both sides}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\left( {{{\operatorname{csch} }^{ - 1}}x} \right)}^2}} \right] \cr & {\text{By the chain rule}} \cr & \frac{{dy}}{{dx}} = 2\left( {{{\operatorname{csch} }^{ - 1}}x} \right)\frac{d}{{dx}}\left[ {{{\operatorname{csch} }^{ - 1}}x} \right] \cr & {\text{Use Theorem 5}}{\text{.20 }}\frac{d}{{dx}}\left[ {{{\operatorname{csch} }^{ - 1}}x} \right] = - \frac{1}{{\left| x \right|\sqrt {1 + {x^2}} }} \cr & \frac{{dy}}{{dx}} = 2\left( {{{\operatorname{csch} }^{ - 1}}x} \right)\left( { - \frac{1}{{\left| x \right|\sqrt {1 + {x^2}} }}} \right) \cr & \frac{{dy}}{{dx}} = - \frac{{2{{\operatorname{csch} }^{ - 1}}x}}{{\left| x \right|\sqrt {1 + {x^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.