Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 70

Answer

$$\frac{{dy}}{{dx}} = 2\sec 2x$$

Work Step by Step

$$\eqalign{ & y = {\tanh ^{ - 1}}\left( {\sin 2x} \right) \cr & {\text{Differentiate both sides}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\tanh }^{ - 1}}\left( {\sin 2x} \right)} \right] \cr & {\text{Use Theorem 5}}{\text{.20 }}\frac{d}{{dx}}\left[ {{{\tanh }^{ - 1}}u} \right] = \frac{{u'}}{{1 - {u^2}}} \cr & \frac{{dy}}{{dx}} = \frac{{\frac{d}{{dx}}\left[ {\sin 2x} \right]}}{{1 - {{\left( {\sin 2x} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{{2\cos 2x}}{{1 - {{\sin }^2}2x}} \cr & {\text{Using the identity }}{\cos ^2}\theta + {\sin ^2}\theta = 1 \cr & \frac{{dy}}{{dx}} = \frac{{2\cos 2x}}{{{{\cos }^2}2x}} \cr & {\text{Simplifying}} \cr & \frac{{dy}}{{dx}} = \frac{2}{{\cos 2x}} \cr & \frac{{dy}}{{dx}} = 2\sec 2x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.