Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 79

Answer

$$2\ln \left( {\sqrt x + \sqrt {1 + x} } \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{\sqrt x \sqrt {1 + x} }}} dx{\text{ }} \cr & {\text{Let }}{u^2} = x,{\text{ 2}}udu = dx \cr & {\text{Substitute}} \cr & \int {\frac{1}{{\sqrt x \sqrt {1 + x} }}} dx{\text{ }} = \int {\frac{1}{{\sqrt {{u^2}} \sqrt {1 + {u^2}} }}\left( {2udu} \right)} {\text{ }} \cr & = \int {\frac{{2u}}{{u\sqrt {1 + {u^2}} }}du} {\text{ }} \cr & = 2\int {\frac{1}{{\sqrt {1 + {u^2}} }}du} {\text{ }} \cr & {\text{Use Theorem 5}}{\text{.20 }}\int {\frac{{du}}{{\sqrt {{u^2} + {a^2}} }} = } \ln \left( {u + \sqrt {{u^2} + {a^2}} } \right) + C \cr & = 2\ln \left( {u + \sqrt {1 + {u^2}} } \right) + C \cr & {\text{Write in terms of }}x \cr & = 2\ln \left( {\sqrt x + \sqrt {1 + x} } \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.