Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 82

Answer

$$ - \frac{1}{2}\ln \frac{{2 + \sqrt {{x^2} + 4x + 8} }}{{\left| {x - 2} \right|}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\left( {x + 2} \right)\sqrt {{x^2} + 4x + 8} }}} \cr & {\text{Completing the square}} \cr & = \int {\frac{{dx}}{{\left( {x + 2} \right)\sqrt {\left( {{x^2} + 4x + 4} \right) + 4} }}} \cr & = \int {\frac{{dx}}{{\left( {x + 2} \right)\sqrt {{{\left( {x + 2} \right)}^2} + 4} }}} \cr & {\text{Let }}u = x - 2,{\text{ }}du = dx \cr & = \int {\frac{{du}}{{u\sqrt {{u^2} + 4} }}} \cr & {\text{Use Theorem 5}}{\text{.20 }}\int {\frac{{du}}{{u\sqrt {{u^2} + {a^2}} }} = } - \frac{1}{a}\ln \frac{{a + \sqrt {{u^2} + {a^2}} }}{{\left| u \right|}} + C \cr & \int {\frac{{du}}{{u\sqrt {{u^2} + 4} }}} = - \frac{1}{2}\ln \frac{{2 + \sqrt {{u^2} + 4} }}{{\left| u \right|}} + C \cr & {\text{Write in terms of }}x \cr & = - \frac{1}{2}\ln \frac{{2 + \sqrt {{{\left( {x - 2} \right)}^2} + 4} }}{{\left| {x - 2} \right|}} + C \cr & = - \frac{1}{2}\ln \frac{{2 + \sqrt {{x^2} + 4x + 8} }}{{\left| {x - 2} \right|}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.