Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 76

Answer

$$ = - \frac{1}{2}\ln \frac{{1 + \sqrt {1 - 4{x^2}} }}{{\left| {2x} \right|}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{2x\sqrt {1 - 4{x^2}} }}} dx{\text{ can be written as }}\int {\frac{1}{{2x\sqrt {1 - {{\left( {2x} \right)}^2}} }}} dx \cr & {\text{Let }}u = 2x,{\text{ }}du = 2dx,{\text{ }}dx = \frac{1}{2}du \cr & {\text{Substituting}} \cr & {\text{ }}\int {\frac{1}{{2x\sqrt {1 - {{\left( {2x} \right)}^2}} }}} dx = \int {\frac{1}{{u\sqrt {1 - {u^2}} }}\left( {\frac{1}{2}} \right)} du \cr & = \frac{1}{2}\int {\frac{1}{{u\sqrt {1 - {u^2}} }}} du \cr & {\text{Use Theorem 5}}{\text{.20 }}\int {\frac{{du}}{{u\sqrt {{a^2} - {u^2}} }} = - \frac{1}{a}\ln \frac{{a + \sqrt {{a^2} - {u^2}} }}{{\left| u \right|}} + } C \cr & = \frac{1}{2}\left( { - \frac{1}{1}\ln \frac{{1 + \sqrt {1 - {u^2}} }}{{\left| u \right|}}} \right) + C \cr & = - \frac{1}{2}\ln \frac{{1 + \sqrt {1 - {u^2}} }}{{\left| u \right|}} + C \cr & {\text{Write in terms of }}x \cr & = - \frac{1}{2}\ln \frac{{1 + \sqrt {1 - 4{x^2}} }}{{\left| {2x} \right|}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.