Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 78

Answer

$$\frac{{45}}{{32}}\left( {12 + {\pi ^2}} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {\int_0^{1 + \sin \theta } {15\theta r} dr} d\theta \cr & {\text{Let }}\theta = x{\text{ and }}r = y \cr & \int_0^{\pi /2} {\int_0^{1 + \sin \theta } {15\theta r} dr} d\theta = \int_0^{\pi /2} {\int_0^{1 + \sin x} {15xy} dy} dx \cr & {\text{Using a computer algebra system to evaluate the }} \cr & {\text{iterated integral, we obtain:}}{\text{}} \cr & \int_0^{\pi /2} {\int_0^{1 + \sin \theta } {15\theta r} dr} d\theta = \frac{{45}}{{32}}\left( {12 + {\pi ^2}} \right) \approx 30.7541 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.