Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 69

Answer

\[\frac{1-\cos \left( 1 \right)}{2}\]

Work Step by Step

\[\begin{align} & \int_{0}^{1}{\int_{y}^{1}{\sin {{x}^{2}}}dxdy} \\ & \text{Switch the order of integration using the region shown below} \\ & \int_{0}^{1}{\int_{y}^{1}{\sin {{x}^{2}}}dxdy}=\int_{0}^{1}{\int_{0}^{x}{\sin {{x}^{2}}}dydx} \\ & \text{Integrating} \\ & =\int_{0}^{1}{\left[ y\sin {{x}^{2}} \right]_{0}^{x}dx} \\ & =\int_{0}^{1}{x\sin {{x}^{2}}dx} \\ & =\frac{1}{2}\int_{0}^{1}{\left( 2x \right)\sin {{x}^{2}}dx} \\ & =-\frac{1}{2}\left[ \cos {{x}^{2}} \right]_{0}^{1} \\ & =-\frac{1}{2}\left[ \cos {{\left( 1 \right)}^{2}}-\cos {{\left( 0 \right)}^{2}} \right] \\ & =\frac{1-\cos \left( 1 \right)}{2} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.