Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 60

Answer

\[9\]

Work Step by Step

\[\begin{align} & \int_{0}^{9}{\int_{\sqrt{x}}^{3}{dy}dx} \\ & \text{Find the integral} \\ & \int_{0}^{9}{\int_{\sqrt{x}}^{3}{dy}dx}=\int_{0}^{9}{\left[ y \right]_{\sqrt{x}}^{3}dx} \\ & =\int_{0}^{9}{\left( 3-\sqrt{x} \right)dx} \\ & =\left[ 3x-\frac{2}{3}{{x}^{3/2}} \right]_{0}^{9} \\ & =\left[ 3\left( 9 \right)-\frac{2}{3}{{\left( 9 \right)}^{3/2}} \right]-\left[ 3\left( 0 \right)-\frac{2}{3}{{\left( 0 \right)}^{3/2}} \right] \\ & =9 \\ & \text{Using the graph to switch the order of integration} \\ & \int_{0}^{9}{\int_{\sqrt{x}}^{3}{dy}dx}=\int_{0}^{3}{\int_{0}^{{{y}^{2}}}{dx}dy} \\ & =\int_{0}^{3}{{{y}^{2}}dy} \\ & =\left[ \frac{1}{3}{{y}^{3}} \right]_{0}^{3} \\ & =\frac{1}{3}{{\left( 3 \right)}^{3}} \\ & =9 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.