Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 64

Answer

$$\eqalign{ & \left( {\text{a}} \right){\text{Area}} = \int_0^2 {\int_{{y^2}}^{2y} {dxdy} } \cr & \left( {\text{b}} \right){\text{Area}} = \int_0^4 {\int_{x/2}^{\sqrt x } {dydx} } \cr} $$

Work Step by Step

$$\eqalign{ & \left( {\text{a}} \right){\text{Area}} = \iint\limits_R {dx}dy \cr & {\text{From the given graph}} \cr & y = \sqrt x \Rightarrow x = {y^2} \cr & y = \frac{x}{2} \Rightarrow x = 2y \cr & {\text{The region }}R{\text{ is }}\left\{ {\left. {\left( {x,y} \right)} \right|{y^2} \leqslant x \leqslant 2y,{\text{ 0}} \leqslant y \leqslant 2} \right\},{\text{ Then}} \cr & {\text{Area}} = \int_0^2 {\int_{{y^2}}^{2y} {dxdy} } \cr & \cr & \left( {\text{b}} \right){\text{From the graph}} \cr & {\text{Area}} = \iint\limits_R {dy}dx \cr & {\text{Area}} = \int_0^4 {\int_{x/2}^{\sqrt x } {dydx} } \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.