Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 62

Answer

\[\frac{32}{3}\]

Work Step by Step

\[\begin{align} & \int_{-2}^{2}{\int_{0}^{4-{{y}^{2}}}{dx}dy} \\ & \text{Find the integral} \\ & =\int_{-2}^{2}{\left( 4-{{y}^{2}} \right)dy} \\ & =\left[ 4y-\frac{1}{3}{{y}^{3}} \right]_{-2}^{2} \\ & =\left[ 4\left( 2 \right)-\frac{1}{3}{{\left( 2 \right)}^{3}} \right]-\left[ 4\left( -2 \right)-\frac{1}{3}{{\left( -2 \right)}^{3}} \right] \\ & =\frac{16}{3}-\left( -\frac{16}{3} \right) \\ & \frac{32}{3} \\ & \text{Using the graph to switch the order of integration} \\ & \int_{-2}^{2}{\int_{0}^{4-{{y}^{2}}}{dx}dy}=\int_{0}^{4}{\int_{-\sqrt{4-x}}^{\sqrt{4-x}}{dy}dx} \\ & =\int_{0}^{4}{\left( 2\sqrt{4-x} \right)dx} \\ & =-2\left[ \frac{{{\left( 4-x \right)}^{3/2}}}{3/2} \right]_{0}^{4} \\ & =-\frac{4}{3}\left[ {{\left( 4-x \right)}^{3/2}} \right]_{0}^{4} \\ & =-\frac{4}{3}\left[ {{\left( 4-4 \right)}^{3/2}}-{{\left( 4-0 \right)}^{3/2}} \right] \\ & =-\frac{4}{3}\left[ 0-8 \right] \\ & =\frac{32}{3} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.