Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 77

Answer

$$\frac{{15\pi }}{2}$$

Work Step by Step

$$\eqalign{ & \int_0^{2\pi } {\int_0^{1 + \cos \theta } {6{r^2}\cos \theta } dr} d\theta \cr & {\text{Let }}r = x{\text{ and }}\theta = y \cr & \int_0^{2\pi } {\int_0^{1 + \cos \theta } {6{r^2}\cos \theta } dr} d\theta = \int_0^{2\pi } {\int_0^{1 + \cos y} {6{x^2}\cos y} dx} dy \cr & {\text{Using a computer algebra system to evaluate the }} \cr & {\text{iterated integral, we obtain:}}{\text{}} \cr & \int_0^{2\pi } {\int_0^{1 + \cos \theta } {6{r^2}\cos \theta } dr} d\theta = \frac{{15\pi }}{2} \approx 23.5619 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.