Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 61

Answer

\[\frac{5}{12}\]

Work Step by Step

\[\begin{align} & \int_{0}^{1}{\int_{{{y}^{2}}}^{\sqrt[3]{y}}{dx}dy} \\ & \text{Find the integral} \\ & \int_{0}^{1}{\int_{{{y}^{2}}}^{\sqrt[3]{y}}{dx}dy}=\int_{0}^{1}{\left( \sqrt[3]{y}-{{y}^{2}} \right)dy} \\ & =\left[ \frac{3}{4}{{y}^{4/3}}-\frac{1}{3}{{y}^{3}} \right]_{0}^{1} \\ & =\left[ \frac{3}{4}{{\left( 1 \right)}^{4/3}}-\frac{1}{3}{{\left( 1 \right)}^{3}} \right]-\left[ \frac{3}{4}{{\left( 0 \right)}^{4/3}}-\frac{1}{3}{{\left( 0 \right)}^{3}} \right] \\ & =\frac{3}{4}-\frac{1}{3} \\ & =\frac{5}{12} \\ & \text{Using the graph to switch the order of integration} \\ & \int_{0}^{1}{\int_{{{y}^{2}}}^{\sqrt[3]{y}}{dx}dy}=\int_{0}^{1}{\int_{{{x}^{3}}}^{\sqrt{x}}{dy}dx} \\ & =\int_{0}^{1}{\left( \sqrt{x}-{{x}^{3}} \right)dx} \\ & =\left[ \frac{2}{3}{{x}^{3/2}}-\frac{1}{4}{{x}^{4}} \right]_{0}^{1} \\ & =\left[ \frac{2}{3}{{\left( 1 \right)}^{3/2}}-\frac{1}{4}{{\left( 1 \right)}^{4}} \right]-\left[ \frac{2}{3}{{\left( 0 \right)}^{3/2}}-\frac{1}{4}{{\left( 0 \right)}^{4}} \right] \\ & =\frac{2}{3}-\frac{1}{4} \\ & =\frac{5}{12} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.