Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 68

Answer

\[\frac{1}{2}-\frac{1}{2{{e}^{4}}}\]

Work Step by Step

\[\begin{align} & \int_{0}^{2}{\int_{x}^{2}{{{e}^{-{{y}^{2}}}}}dydx} \\ & \text{Switch the order of integration using the region shown below} \\ & \int_{0}^{2}{\int_{x}^{2}{{{e}^{-{{y}^{2}}}}}dydx}=\int_{0}^{2}{\int_{0}^{y}{{{e}^{-{{y}^{2}}}}}dxdy} \\ & \text{Integrating} \\ & =\int_{0}^{2}{\left[ x{{e}^{-{{y}^{2}}}} \right]_{0}^{y}dy} \\ & =\int_{0}^{2}{y{{e}^{-{{y}^{2}}}}dy} \\ & =-\frac{1}{2}\int_{0}^{2}{{{e}^{-{{y}^{2}}}}\left( -2y \right)dy} \\ & =-\frac{1}{2}\left[ {{e}^{-{{y}^{2}}}} \right]_{0}^{2} \\ & =-\frac{1}{2}\left[ {{e}^{-{{\left( 2 \right)}^{2}}}}-{{e}^{-{{\left( 0 \right)}^{2}}}} \right] \\ & =-\frac{1}{2}\left[ {{e}^{-4}}-1 \right] \\ & =\frac{1}{2}-\frac{1}{2{{e}^{4}}} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.