Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 65

Answer

\[\frac{26}{9}\]

Work Step by Step

\[\begin{align} & \int_{0}^{2}{\int_{x}^{2}{x\sqrt{1+{{y}^{3}}}}dydx} \\ & \text{Switch the order of integration using the region shown below} \\ & \int_{0}^{2}{\int_{x}^{2}{x\sqrt{1+{{y}^{3}}}}dydx}=\int_{0}^{2}{\int_{0}^{y}{x\sqrt{1+{{y}^{3}}}}dxdy} \\ & \text{Integrating} \\ & =\int_{0}^{2}{\left[ \frac{1}{2}{{x}^{2}}\sqrt{1+{{y}^{3}}} \right]_{0}^{y}dy} \\ & =\int_{0}^{2}{\left[ \frac{1}{2}{{\left( y \right)}^{2}}\sqrt{1+{{y}^{3}}} \right]dy} \\ & =\frac{1}{2}\int_{0}^{2}{\sqrt{1+{{y}^{3}}}\left( {{y}^{2}} \right)dy} \\ & =\frac{1}{6}\int_{0}^{2}{\sqrt{1+{{y}^{3}}}\left( 3{{y}^{2}} \right)dy} \\ & =\frac{1}{6}\left[ \frac{{{\left( 1+{{y}^{3}} \right)}^{3/2}}}{3/2} \right]_{0}^{2} \\ & =\frac{1}{9}\left[ {{\left( 1+{{y}^{3}} \right)}^{3/2}} \right]_{0}^{2} \\ & =\frac{1}{9}\left[ {{\left( 1+{{2}^{3}} \right)}^{3/2}}-{{\left( 1+{{0}^{3}} \right)}^{3/2}} \right] \\ & =\frac{1}{9}\left[ 27-1 \right] \\ & =\frac{26}{9} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.