Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 67

Answer

\[{{e}^{4}}-1\]

Work Step by Step

\[\begin{align} & \int_{0}^{1}{\int_{2x}^{2}{4{{e}^{{{y}^{2}}}}}dydx} \\ & \text{Switch the order of integration using the region shown below} \\ & \int_{0}^{1}{\int_{2x}^{2}{4{{e}^{{{y}^{2}}}}}dydx}=\int_{0}^{2}{\int_{0}^{y/2}{4{{e}^{{{y}^{2}}}}}dxdy} \\ & \text{Integrating} \\ & =\int_{0}^{2}{\left[ 4x{{e}^{{{y}^{2}}}} \right]_{0}^{y/2}dy} \\ & =\int_{0}^{2}{\left[ 4\left( \frac{y}{2} \right){{e}^{{{y}^{2}}}} \right]dy} \\ & =\int_{0}^{2}{2y{{e}^{{{y}^{2}}}}dy} \\ & =\left[ {{e}^{{{y}^{2}}}} \right]_{0}^{2} \\ & ={{e}^{{{\left( 2 \right)}^{2}}}}-{{e}^{{{\left( 0 \right)}^{2}}}} \\ & ={{e}^{4}}-1 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.