Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 66

Answer

\[\ln 5\]

Work Step by Step

\[\begin{align} & \int_{0}^{4}{\int_{\sqrt{x}}^{2}{\frac{3}{2+{{y}^{3}}}}dydx} \\ & \text{Switch the order of integration using the region shown below} \\ & \int_{0}^{4}{\int_{\sqrt{x}}^{2}{\frac{3}{2+{{y}^{3}}}}dydx}=\int_{0}^{2}{\int_{0}^{{{y}^{2}}}{\frac{3}{2+{{y}^{3}}}}dxdy} \\ & \text{Integrating} \\ & =\int_{0}^{2}{\left[ \frac{3x}{2+{{y}^{3}}} \right]_{0}^{{{y}^{2}}}dy} \\ & =\int_{0}^{2}{\frac{3{{y}^{2}}}{2+{{y}^{3}}}dy} \\ & =\left[ \ln \left| 2+{{y}^{3}} \right| \right]_{0}^{2} \\ & =\ln \left| 2+{{\left( 2 \right)}^{3}} \right|-\ln \left| 2+{{\left( 0 \right)}^{3}} \right| \\ & =\ln \left( 10 \right)-\ln \left( 2 \right) \\ & =\ln 5 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.