Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 59

Answer

\[1\]

Work Step by Step

\[\begin{align} & \int_{0}^{2}{\int_{x/2}^{1}{dy}dx} \\ & \text{Find the integral} \\ & \int_{0}^{2}{\int_{x/2}^{1}{dy}dx}=\int_{0}^{2}{\left[ y \right]_{x/2}^{1}dx} \\ & =\int_{0}^{2}{\left[ 1-\frac{x}{2} \right]dx} \\ & =\left[ x-\frac{{{x}^{2}}}{4} \right]_{0}^{2} \\ & =\left[ \left( 2 \right)-\frac{{{\left( 2 \right)}^{2}}}{4} \right]-\left[ \left( 0 \right)-\frac{{{\left( 0 \right)}^{2}}}{4} \right] \\ & =2-\frac{4}{4} \\ & =1 \\ & \text{Using the graph to switch the order of integration} \\ & \int_{0}^{2}{\int_{x/2}^{1}{dy}dx}=\int_{0}^{1}{\int_{0}^{2y}{dx}dy} \\ & =\int_{0}^{1}{\left[ x \right]_{0}^{2y}dy} \\ & =\int_{0}^{1}{2ydy} \\ & =\left[ {{y}^{2}} \right]_{0}^{1} \\ & ={{\left( 1 \right)}^{2}}-{{\left( 0 \right)}^{2}} \\ & =1 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.