Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 973: 70

Answer

$$\sin \left( 4 \right) - 4\cos \left( 4 \right)$$

Work Step by Step

$$\eqalign{ & \int_0^2 {\int_{{y^2}}^4 {\sqrt x \sin x} dxdy} \cr & {\text{Switch the order of integration using the region shown below}} \cr & \int_0^2 {\int_{{y^2}}^4 {\sqrt x \sin x} dxdy} = \int_0^4 {\int_0^{\sqrt x } {\sqrt x \sin x} dydx} \cr & {\text{Integrating}} \cr & = \int_0^4 {\left[ {y\sqrt x \sin x} \right]_0^{\sqrt x }dx} \cr & = \int_0^4 {\left[ {\sqrt x \sqrt x \sin x - \left( 0 \right)\sqrt x \sin x} \right]dx} \cr & = \int_0^4 {x\sin xdx} \cr & {\text{Integrating by parts we obtain}} \cr & = \left[ {\sin x - x\cos x} \right]_0^4 \cr & = \left[ {\sin \left( 4 \right) - \left( 4 \right)\cos \left( 4 \right)} \right] - \left[ {2\sin \left( 0 \right) - 2\left( 0 \right)\cos \left( 0 \right)} \right] \cr & = \sin \left( 4 \right) - 4\cos \left( 4 \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.