Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.5 Exercises - Page 913: 38

Answer

$$ (a) \text{Degree of homogeneity: } n=3$$ $$ (b)\ \ x f_{x}(x, y)+y f_{y}(x, y) =3 f(x, y) $$

Work Step by Step

Given$$f(x, y)=x^{3}-3 x y^{2}+y^{3}$$ \begin{array}{l}{\text { (a) since } } \\ { \qquad f(t x, t y)=(t x)^{3}-3(t x)(t y)^{2}+(t y)^{3}=t^{3}\left(x^{3}-3 x y^{2}+y^{3}\right)=t^{3} f(x, y) } \\ {\text { So, degree of homogeneity: } }n=3 \end{array} Since $$f_x(x,y)=\frac{\partial f(x,y)}{\partial y}= 3x^2-3y^2$$ $$f_y(x,y)=\frac{\partial f(x,y)}{\partial y}=-6xy+3y^2$$ So, we get \begin{align} \text { (b) } x f_{x}(x, y)+y f_{y}(x, y)&=x\left(3x^2-3y^2\right)+y\left(-6xy+3y^2\right)\\ & = 3x^3-3 xy^2 -6xy^2+3y^3\\ &= 3x^3-9 xy^2 +3y^3 \\ & = 3(x^3-3 xy^2 + y^3)\\ &=3f(x, y) \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.