Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.5 Exercises - Page 913: 30

Answer

\begin{aligned} \frac{\partial z }{\partial x} = \frac{e^x \sin(y+z)}{1-e^x \cos(y+z)} \end{aligned} \begin{aligned} \frac{\partial z }{\partial y} = \frac{e^x \cos ( y+z)}{ 1-e^x \cos(y+z)}\\ \end{aligned}

Work Step by Step

Given $$z=e^x \sin(y+z)$$ $$ \Rightarrow e^x \sin(y+z)-z=0$$ by letting $$F(x,y,z)= e^x \sin(y+z)-z$$ So, we have $$F_x(x,y,z)=\frac{\partial F(x,y,z)}{\partial x}= e^x \sin(y+z)\\ $$ $$F_y(x,y,z)=\frac{\partial F(x,y,z)}{\partial y}= e^x \cos(y+z)$$ $$F_z(x,y,z)=\frac{\partial F(x,y,z)}{\partial z}=e^x \cos(y+z)-1$$ Also, we get \begin{aligned} \frac{\partial z }{\partial x}&=-\frac{F_{x}(x, y,z)}{F_{z}(x, y,z)} \\ &=-\frac{e^x \sin(y+z)}{e^x \cos(y+z)-1} \\ &= \frac{e^x \sin(y+z)}{1-e^x \cos(y+z)} \end{aligned} \begin{aligned} \frac{\partial z }{\partial y}&=-\frac{F_{y}(x, y,z)}{F_{z}(x, y,z)} \\ &=- \frac{e^x \cos ( y+z)}{ e^x \cos(y+z)-1}\\ &= \frac{e^x \cos ( y+z)}{ 1-e^x \cos(y+z)}\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.