Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.5 Exercises - Page 913: 29

Answer

\begin{aligned} \frac{\partial z }{\partial x} =- \frac{\sec^2(x+y)}{\sec^2(y+z)} \end{aligned} \begin{aligned} \frac{\partial z }{\partial y} =-\left(\frac{ \sec^2(x+y)}{\sec^2(y+z)}+1\right) \end{aligned}

Work Step by Step

Given $$\tan(x+y)+ \tan(y+z)=1$$ $$ \Rightarrow \tan(x+y)+ \tan(y+z)-1=0$$ by letting $$F(x,y,z)= \tan(x+y)+ \tan(y+z)-1$$ So, we have $$F_x(x,y,z)=\frac{\partial F(x,y,z)}{\partial x}=\sec^2(x+y)\\ $$ $$F_y(x,y,z)=\frac{\partial F(x,y,z)}{\partial y}= \sec^2(x+y)+\sec^2(y+z)$$ $$F_z(x,y,z)=\frac{\partial F(x,y,z)}{\partial z}=\sec^2(y+z)$$ Also, we get \begin{aligned} \frac{\partial z }{\partial x}&=-\frac{F_{x}(x, y,z)}{F_{z}(x, y,z)} \\ &=- \frac{\sec^2(x+y)}{\sec^2(y+z)} \end{aligned} \begin{aligned} \frac{\partial z }{\partial y}&=-\frac{F_{y}(x, y,z)}{F_{z}(x, y,z)} \\ &=- \frac{\sec^2(x+y)+\sec^2(y+z)}{\sec^2(y+z)} \\ &=-\left(\frac{ \sec^2(x+y)}{\sec^2(y+z)}+1\right) \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.