Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.5 Exercises - Page 913: 2

Answer

$$\frac{dw}{dt}=-\frac{\sin t\cos t-e^{2t}}{\sqrt{\cos^2t+e^{2t}}}$$ For $t=0$: $$\frac{dw}{dt}=\frac{1}{\sqrt2}$$

Work Step by Step

Using the Chain rule we have: $$\frac{dw}{dt}=\frac{\partial w}{\partial x}\frac{dx}{dt}+\frac{\partial w}{\partial y}\frac{dy}{dt}=\frac{\partial}{\partial x}(\sqrt{x^2+y^2})\frac{d}{dt}(\cos t)+\frac{\partial}{\partial y}(\sqrt{x^2+y^2})\frac{d}{dt}(e^t)=\frac{1}{2\sqrt{x^2+y^2}}\frac{\partial}{\partial x}(x^2+y^2)\cdot(-\sin t)+\frac{1}{2\sqrt{x^2+y^2}}\frac{\partial}{\partial y}(x^2+y^2)\cdot e^t=-\sin t\frac{2x}{2\sqrt{x^2+y^2}}+e^t\frac{2y}{2\sqrt{x^2+y^2}}=-\sin t\frac{x}{\sqrt{x^2+y^2}}+e^t\frac{y}{\sqrt{x^2+y^2}}$$ Expressing this in terms of $t$ we have: $$\frac{dw}{dt}=-\sin t\frac{\cos t}{\sqrt{\cos^2t+e^{2t}}}+e^t\frac{e^t}{\sqrt{\cos^2t+e^{2t}}}=-\frac{\sin t\cos t-e^{2t}}{\sqrt{\cos^2t+e^{2t}}}$$ When $t=0$ we have: $$\frac{dw}{dt}=\left.-\frac{\sin t\cos t-e^{2t}}{\sqrt{\cos^2t+e^{2t}}}\right|_{t=0}=-\frac{\sin0\cos0-e^{2\cdot0}}{\sqrt{\cos^20+e^{2\cdot0}}}=-\frac{0-1}{\sqrt{1+1}}=\frac{1}{\sqrt2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.