Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.5 Exercises - Page 913: 35

Answer

$\text{curl } \mathbf{F} = \frac{2x}{x^2 + y^2} \mathbf{k} $

Work Step by Step

$F(x, y, z) = \arctan\left(\frac{x}{y}\right)\mathbf{i} + \ln\sqrt{x^2 + y^2},\mathbf{j} + \mathbf{k}$ $\text{curl } F = \nabla \times F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$ where $P = \arctan\left(\frac{x}{y}\right)$, $Q = \ln\sqrt{x^2 + y^2}$, and $R = 1$. $\text{curl } F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \arctan\left(\frac{x}{y}\right) & \ln\sqrt{x^2 + y^2} & 1 \end{vmatrix}$ $\text{curl } \mathbf{F} = \left( \frac{\partial}{\partial y}(1) - \frac{\partial}{\partial z}(Q) \right)\mathbf{i} - \left( \frac{\partial}{\partial x}(1) - \frac{\partial}{\partial z}(P) \right)\mathbf{j} + \left( \frac{\partial}{\partial x}(Q) - \frac{\partial}{\partial y}(P) \right)\mathbf{k}$ $= \left( 0 - 0 \right)\mathbf{i} - \left( 0 - 0 \right)\mathbf{j} + \left( \frac{\partial}{\partial x}(\ln\sqrt{x^2 + y^2}) - \frac{\partial}{\partial y}(\arctan\left(\frac{x}{y}\right)) \right)\mathbf{k}$ $= \left( 0 \right)\mathbf{i} - \left( 0 \right)\mathbf{j} + \left( \frac{x}{x^2 + y^2} - \left( -\frac{x}{x^2 + y^2} \right) \right)\mathbf{k}$ $= \left( 0 \right)\mathbf{i} - \left( 0 \right)\mathbf{j} + \left( \frac{2x}{x^2 + y^2} \right)\mathbf{k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.