Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.5 Exercises - Page 913: 37

Answer

$$ (a) \text{Degree of homogeneity: } n=1$$ $$ (b)\ \ x f_{x}(x, y)+y f_{y}(x, y) =1 f(x, y) $$

Work Step by Step

Given$$f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$$ it can be written $$\Rightarrow f(x, y)= x y (x^{2}+y^{2})^{-\frac{1}{2}} $$ \begin{array}{l}{\text { (a)- since } } \\ {\qquad f(t x, t y)=\frac{(t x)(t y)}{\sqrt{(t x)^{2}+(t y)^{2}}}= \frac{t^2x y}{t\sqrt{x^{2}+y^{2}}}=t\left(\frac{x y}{\sqrt{x^{2}+y^{2}}}\right)=t^1 f(x, y)} \\ {\text { So, degree of homogeneity: } }n=1 \end{array} Since $$f_x(x,y)=\frac{\partial f(x,y)}{\partial y}=y (x^{2}+y^{2})^{-\frac{1}{2}} -\frac{1}{2}x y (2x) (x^{2}+y^{2})^{-\frac{3}{2}}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(x^{2}+y^{2})^{-\frac{3}{2}}\left( y (x^{2}+y^{2}) -x^2 y \right)=y^3(x^{2}+y^{2})^{-\frac{3}{2}} $$ $$f_y(x,y)=\frac{\partial f(x,y)}{\partial y}=x (x^{2}+y^{2})^{-\frac{1}{2}} -\frac{1}{2}x y (2y) (x^{2}+y^{2})^{-\frac{3}{2}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(x^{2}+y^{2})^{-\frac{3}{2}}\left( x (x^{2}+y^{2}) -x y^2 \right)=x^3(x^{2}+y^{2})^{-\frac{3}{2}} $$ \begin{array}{l} {\text { (b) } x f_{x}(x, y)+y f_{y}(x, y)=x\left(\frac{y^{3}}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right)+y\left(\frac{x^{3}}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right)\\ =xy\left(\frac{x^{2}+y^2}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right)=\frac{x y}{\sqrt{x^{2}+y^{2}}} =1 f(x, y)}\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.