Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.5 Exercises - Page 913: 10

Answer

$$\frac{dw}{dt}=24t^3+8$$

Work Step by Step

(a) We will use the Chain Rule: $$\frac{dw}{dt}=\frac{\partial w}{\partial x}\frac{dx}{dt}+\frac{\partial w}{\partial y}\frac{dy}{dt}+\frac{\partial w}{\partial z}\frac{dz}{dt}= \frac{\partial}{\partial x}(xy^2+x^2z+yz^2)\frac{d}{dt}(t^2)+\frac{\partial}{\partial y}(xy^2+x^2z+yz^2)\frac{d}{dt}(2t)+\frac{\partial}{\partial z}(xy^2+x^2z+yz^2)\frac{d}{dt}(2)= (y^2+2xz)\cdot2t+(2xy+z^2)\cdot2+(x^2+2yz)\cdot0=2t(y^2+2xz)+2(2xy+z^2)$$ Expressing this in terms of $t$ we have: $$\frac{dw}{dt}=2t((2t)^2+2t^2\cdot2)+2(2t^2\cdot2t+2^2)=2t(4t^2+4t^2)+2(4t^3+4)=16t^3+8t^3+8=24t^3+8$$ (b) We will first convert $w$ to a function of $t$ and then differentiate: $$w=xy^2+x^2z+yz^2=t^2\cdot(2t)^2+(t^2)^2\cdot2+2t\cdot2^2=4t^4+2t^4+8t=6t^4+8t$$ $$\frac{dw}{dt}=\frac{d}{dt}(6t^4+8t)=6\cdot4t^3+8=24t^3+8$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.