Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.4 Solving Radical Equations - 8.4 Exercises - Page 654: 79

Answer

$a= 4$, $a= 8 $

Work Step by Step

Given \begin{equation} \sqrt{6 a+1}=1+\sqrt{5 a-4}. \end{equation} First square both sides to eliminate the radical signs (may be repeated), and solve for $a$. \begin{equation} \begin{aligned} \sqrt{6 a+1}&=1+\sqrt{5 a-4}\\ \left(\sqrt{6 a+1}\right)^2&= \left( 1+\sqrt{5 a-4}\right)^2\\ 6a+1& =1+2\sqrt{5 a-4} +5a-4\\ a+4&= 2\sqrt{5 a-4}\\ \left(a+4\right)^2&=\left(2\sqrt{5 a-4}\right)^2\\ a^2+8a+16&= 20a-16\\ a^2-12a+32&= 0. \end{aligned} \end{equation} Solve the quadratic equation using the quadratic formula: \begin{equation} \begin{aligned} a & =\frac{-(-12) \pm \sqrt{(-12)^2-4 \cdot 1 \cdot(32)}}{2 \cdot 1} \\ & =\frac{12 \pm 4}{2} \\ \Longrightarrow a& =\frac{12 + 4}{2}\\ &= 8\\ a& =\frac{12 - 4}{2}\\ &= 4. \end{aligned} \end{equation} Check. \begin{equation} \begin{aligned} \sqrt{6 (4)+1}&\stackrel{?}{=}1+\sqrt{5 (4)-4}\\ 5& =5\quad \quad \textbf{True}\\ \sqrt{6 (8)+1}&\stackrel{?}{=}1+\sqrt{5 (8)-4}\\ 7& =7\quad \quad \textbf{True}. \end{aligned} \end{equation} The solution is $a=4 $, $a= 8 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.