Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.4 Solving Radical Equations - 8.4 Exercises - Page 654: 59

Answer

$x=12 $

Work Step by Step

Given\begin{equation} \sqrt{x+4}-\sqrt{3 x}=-2. \end{equation} Let's take a look at the student's solution and see where she went wrong and make the necessary corrections. \begin{equation} \begin{aligned} (\sqrt{x+4}-\sqrt{3 x})^2 & =(-2)^2 \\ x+4-3 x & =4 \\ -2 x+4 & =4 \\ -2 x & =0 \\ x & =0. \end{aligned} \end{equation} The first mistake is that the two radical terms remained on the left hand side while squaring both sides. This move will only complicate the problem without eliminating the radical terms. The squaring of the radicals was poorly done because\begin{equation} (\sqrt{x+4}-\sqrt{3 x})^2\neq x+4-3 x . \end{equation} Here is how the radical equation should be solved. \begin{equation} \begin{aligned} \sqrt{x+4}-\sqrt{3 x} & =-2 \\ \sqrt{x+4} & =\sqrt{3 x}-2 \\ \left( \sqrt{x+4} \right)^2 & =\left(\sqrt{3 x}-2 \right)^2\\ x+4 & =3x-4\sqrt{3 x}+4 \\ x+4-3x-4& =-4\sqrt{3 x} \\ -2x & =-4\sqrt{3 x}\\ x& = 2\sqrt{3 x}\\ \left(x\right)^2&= \left( 2\sqrt{3 x} \right)\\ x^2&= 4\cdot 3x= 12x\\ x^2-12x&= 0\\ x(x-12)&= 0\\ \implies x= 0\\ x&= 12. \end{aligned} \end{equation} Check. \begin{equation} \begin{aligned} \sqrt{0+4}-\sqrt{3 \cdot 0}& \stackrel{?}{=}-2 \\ 2& =-2\quad \textbf{False}\\ \sqrt{12+4}-\sqrt{3 \cdot 12}& \stackrel{?}{=}-2 \\ -2& =-2\quad \textbf{True} \end{aligned} \end{equation} The solution is $x=12 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.