Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.4 Solving Radical Equations - 8.4 Exercises - Page 654: 47

Answer

$x=\frac{1-\sqrt{241}}{6}\approx -2.42 $, $x=\frac{1+\sqrt{241}}{6}\approx 2.75 $

Work Step by Step

Given \begin{equation} \sqrt{4 x^2+9 x+5}=5+x. \end{equation} First square both sides of the radical equation to eliminate the radical sign. Rearrange and solve for $x$. \begin{equation} \begin{aligned} \sqrt{4 x^2+9 x+5}&=5+x\\ \left( \sqrt{4 x^2+9 x+5}\right)^2&= \left( 5+x\right)^2\\ 4 x^2+9 x+5& = 25+10x+x^2\\ 3x^2-x-20& = 0. \end{aligned} \end{equation} Use the quadratic formula to find the value(s) of $x$. \begin{equation} \begin{aligned} a &= 3\ , b= -1\ ,\ c = -20\\ x & = \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\ x&=\frac{-(-1) \pm \sqrt{(-1)^2-4 \cdot 3 \cdot(-20)}}{2 \cdot 3} \\ &=\frac{1\pm\sqrt{241}}{6}\\ \implies x& = \frac{1-\sqrt{241}}{6}\\ & = -2.42069\\ x& = \frac{1+\sqrt{241}}{6}\\ & = 2.75402 \end{aligned} \end{equation} Check. \begin{equation} \begin{aligned} &\sqrt{4\cdot (-2.42069)^2+9\cdot(-2.42069)+5}\\ & \stackrel{?}{=} 5-2.42069 \\ 2.58& =2.58\quad \textbf{True}\\ &\sqrt{4\cdot (2.75402)^2+9\cdot(2.75402)+5}\\ & \stackrel{?}{=} 5+2.75402 \\ 7.75& =7.75\quad \textbf{True} \end{aligned} \end{equation} The solution is $$x=\frac{1-\sqrt{241}}{6}\approx -2.42, x=\frac{1+\sqrt{241}}{6}\approx 2.75 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.