Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.4 Solving Radical Equations - 8.4 Exercises - Page 654: 68

Answer

$x= 522 $

Work Step by Step

Given \begin{equation} \sqrt[5]{-2 x+20}=-4. \end{equation} Start by rewriting the radical as a power of fraction and then solve for $x$. \begin{equation} \begin{aligned} \sqrt[5]{-2 x+20}&=-4\\ \left(-2 x+20\right)^{\frac{1}{5}}&= -4\\ \left(\left(-2 x+20\right)^{\frac{1}{5}}\right)^5& = \left( -4\right)^5 \\ -2 x+20& =-1024\\ x&= \frac{-1024-20}{-2}\\ & = 522. \end{aligned} \end{equation} Check. \begin{equation} \begin{aligned} \left(-2\cdot( 522)+20\right)^{\frac{1}{5}}&\stackrel{?}{=}-4\\ -4& =-4\quad \checkmark \end{aligned} \end{equation} The solution is $x= 522$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.