Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.4 Solving Radical Equations - 8.4 Exercises - Page 654: 43

Answer

$x= 16$

Work Step by Step

Given \begin{equation} \sqrt{x-7}-\sqrt{x}=-1. \end{equation} First rearrange the radical equation and square both sides to eliminate the radical signs. \begin{equation} \begin{aligned} \sqrt{x-7}-\sqrt{x}&=-1\\ \sqrt{x-7}&=\sqrt{x}-1\\ \left( \sqrt{x-7} \right)^2&= \left( \sqrt{x}-1\right)^2\\ x-7& = x-2\sqrt{x}+1\\ -8& = -2\sqrt{x}\\ \left(4\right)^2& = \left(\sqrt{x}\right)^2\\ 16&= x. \end{aligned} \end{equation} Check. \begin{equation} \begin{aligned} \sqrt{16-7}-\sqrt{16}& \stackrel{?}{=} -1 \\ 3-4&\stackrel{?}{=} -1 \\ -1& =-1\ \checkmark. \end{aligned} \end{equation} The solution is $x= 16$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.