Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.4 Solving Radical Equations - 8.4 Exercises - Page 654: 49

Answer

$x= 2 $

Work Step by Step

Given \begin{equation} \sqrt{w+2}= 4-w. \end{equation} First square both sides of the radical equation to eliminate the radical sign. Rearrange and solve for $w$. \begin{equation} \begin{aligned} \sqrt{w+2}&=4-w\\ \left( \sqrt{w+2}\right)^2&= \left( 4-w\right)^2\\ w+2& =16-8w+w^2\\ 0& = 14-9w+w^2. \end{aligned} \end{equation} Use the quadratic formula to find the value(s) of $w$. \begin{equation} \begin{aligned} a &= 1\ , b= -9\ ,\ c = 14\\ w & = \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\ w&=\frac{-(-9) \pm \sqrt{(-9)^2-4 \cdot 1 \cdot(14)}}{2 \cdot 1} \\ &=\frac{9\pm 5}{2}\\ \implies w& = \frac{9+5}{2}\\ & = 7\\ w& = \frac{9-5}{2}\\ & = 2. \end{aligned} \end{equation} Check. \begin{equation} \begin{aligned} \sqrt{7+2}& \stackrel{?}{=} 4-7 \\ 3& =-3\quad \textbf{False}\\ \sqrt{2+2}& \stackrel{?}{=} 4-2\\ 2& =2\quad \checkmark. \end{aligned} \end{equation} The solution is $x= 2 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.