Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.4 Solving Radical Equations - 8.4 Exercises - Page 654: 48

Answer

$x\approx -1.90 $, $x\approx 2.72 $

Work Step by Step

Given \begin{equation} \sqrt{12 x^2+5 x-8}=7+x. \end{equation}First square both sides of the radical equation to eliminate the radical sign. Rearrange and solve for $x$. \begin{equation} \begin{aligned} \left( \sqrt{12 x^2+5x-8}\right)^2&= \left( 7+x\right)^2\\ 12 x^2+5x-8& =49+14x+x^2\\ 11x^2-9x-57& = 0. \end{aligned} \end{equation} Use the quadratic formula to find the value(s) of $x$. \begin{equation} \begin{aligned}a &= 11\ , b= -9\ ,\ c = -57\\ x & = \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\ x&=\frac{-(-9) \pm \sqrt{(-9)^2-4 \cdot 3 \cdot(-57)}}{2 \cdot 11} \\ &=\frac{9\pm\sqrt{2589}}{22}\\ \implies x& = \frac{9+\sqrt{2589}}{22}\\ & \approx2.722\\ x& = \frac{9-\sqrt{2589}}{22}\\ & \approx -1.904\\ \end{aligned} \end{equation}Check. \begin{equation} \begin{aligned} \sqrt{12\cdot (-1.904)^2+5\cdot(-1.904)-8}& \stackrel{?}{=} 5-1.904 \\ 5.10& =5.10\quad \textbf{True}\\ \sqrt{12\cdot ( 2.722)^2+5\cdot( 2.722)-8}& \stackrel{?}{=} 5+ 2.722 \\ 9.72& =9.72\quad \textbf{True} \end{aligned} \end{equation} The solution is $x\approx -1.90 $ and $x\approx 2.72 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.