Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.4 Solving Radical Equations - 8.4 Exercises - Page 654: 75

Answer

$x= 12 $

Work Step by Step

Given \begin{equation} 5 \sqrt{x-8}=\sqrt{x+4}+6. \end{equation} First rearrange the equation and square both sides to eliminate the radical signs (may be repeated), and solve for $x$. \begin{equation} \begin{aligned} 5 \sqrt{x-8}&=\sqrt{x+4}+6\\ \left(5 \sqrt{x-8}\right)^2&= \left( \sqrt{x+4}+6 \right)^2\\ 25x-200& = x+4+12\sqrt{x+4}+36 \\ 24x-240&= 12\sqrt{x+4}\\ \left(24x-240 \right)^2& = \left( 12\sqrt{x+4} \right)^2 \\ 576x^2-11520x+57600&= 144x+576\\ 576x^2-11664x+57024&=0.\\ a & =576, b=-11664, c=57024 \\ x & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ x & =\frac{-(-11664) \pm \sqrt{(-11664)^2-4 \cdot 576 \cdot(57024)}}{2 \cdot 576} \\ & =\frac{11664 \pm 2160}{1152} \\ \Longrightarrow x& =\frac{11664 + 2160}{1152}\\ &= 12\\ x& =\frac{11664 - 2160}{1152}\\ &= \frac{33}{4}. \end{aligned} \end{equation} Check. \begin{equation} \begin{aligned} 5 \sqrt{33/4-8}&\stackrel{?}{=}\sqrt{33/4+4}+6\\ 2.5& =9.5\quad \quad \textbf{False}\\ 5 \sqrt{12-8}&\stackrel{?}{=}\sqrt{12+4}+6\\ 10& =10\quad \quad \textbf{True} \end{aligned} \end{equation} The solution is $x= 12$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.