Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Review Exercises - Page 637: 35

Answer

$\log_b \dfrac{3x}{y^2}$

Work Step by Step

Using the properties of logarithms, the given expression, $ \log_b3+\log_bx-2\log_by $, is equivalent to \begin{align*}\require{cancel} & \log_b3+\log_bx-\log_by^2 &(\text{use }\log_b x^y=y\log_b x) \\\\&= \log_b3x-\log_by^2 &(\text{use }\log_b (xy)=\log_b x+\log_b y) \\\\&= \log_b \dfrac{3x}{y^2} &(\text{use }\log_b \dfrac{x}{y}=\log_b x-\log_b y) .\end{align*} Hence, the expression $ \log_b3+\log_bx-2\log_by $ is equivalent to $ \log_b \dfrac{3x}{y^2} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.