Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Review Exercises - Page 637: 24

Answer

a) $12$ b) $13$ c) $4$

Work Step by Step

a) Let $x=4^{\log_4 12}.$ Taking the logarithm of both sides, then \begin{align*} \log x&=\log4^{\log_4 12} .\end{align*} Using the properties of logarithms, the equations above is equivalent to \begin{align*} \log x&=(\log_4 12)(\log4) &(\text{use }\log_b x^y=y\log_b x) .\end{align*} Using $\log_b a=\dfrac{\log a}{\log b}$, the equation above is equivalent to \begin{align*}\require{cancel} \log x&=\left(\dfrac{\log12}{\cancel{\log4}}\right)(\cancel{\log4}) \\\\ \log x&=\log12 .\end{align*} Since $\log a=\log b$ implies $a=b$, then the equation above implies \begin{align*}\require{cancel} x&=12 .\end{align*} Hence, the expression $4^{\log_4 12}$ evaluates to $ 12 $. b) Using the properties of logarithms, the given expression, $ \log_9 9^{13} $, is equivalent to \begin{align*} & 13\log_9 9 &(\text{use }\log_b x^y=y\log_b x) \\&= 13(1) &(\text{use }\log_b b=1) \\&= 13 .\end{align*} Hence, the expression $ \log_9 9^{13} $ evaluates to $ 13 $. c) Using exponents, the given expression, $ \log_5 625 $, is equivalent to \begin{align*} & \log_5 5^4 .\end{align*} Using the properties of logarithms, the expression above is equivalent to \begin{align*} & 4\log_5 5 &(\text{use }\log_b x^y=y\log_b x) \\&= 4(1) &(\text{use }\log_b b=1) \\&= 4 .\end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.