Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Review Exercises - Page 637: 32

Answer

Graph of $S(x)=100\log_2(x+2)$

Work Step by Step

Substituting values of $x$ in the given function, $ S(x)=100\log_2(x+2) $, results to \begin{array}{c|c|c} \text{If }x=0: & \text{If }x=2 & \text{If }x=6 \\\\ S(x)=y=100\log_2(x+2) & S(x)=y=100\log_2(x+2) & S(x)=y=100\log_2(x+2) \\ y=100\log_2(0+2) & y=100\log_2(2+2) & y=100\log_2(6+2) \\ y=100\log_2 2 & y=100\log_2 4 & y=100\log_2 8 \\ y=100(1) & y=100\log_2 2^2 & y=100\log_2 2^3 \\ y=100 & y=100\cdot2\log_2 2 & y=100\cdot3\log_2 2 \\ & y=100\cdot2(1) & y=100\cdot3(1) \\ & y=200 & y=300 .\end{array} Tabulating the results above gives the table below. \begin{array}{c|c} \hline x & y \\\hline 0 & 100 \\\hline 2 & 200 \\\hline 6 & 300 \end{array} Connecting the points $ \left(0,100\right), \left(2,200\right), \text{ and } \left(6,300\right) $ with a curve gives the graph of $ S(x)=100\log_2(x+2) $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.