Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Review Exercises - Page 637: 16

Answer

$\left\{x\right\}$

Work Step by Step

Expressing both sides of the given equation, $ 4^{3x}=8^{x+4} ,$ in the same base, the equation above is equivalent to \begin{align*} \left(2^2\right)^{3x}&=\left(2^3\right)^{x+4} \\\\ 2^{6x}&=2^{3x+12} &(\text{use }\left(a^m\right)^n=a^{mn}) .\end{align*} Since $a^x=a^y$ implies $x=y$, the equation above implies \begin{align*} 6x&=3x+12 .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*}\require{cancel} 6x-3x&=3x-3x+12 \\ 3x&=12 \\\\ \dfrac{\cancel3x}{\cancel3}&=\dfrac{12}{3} \\\\ x&=4 .\end{align*} Hence, the solution set to the equation $ 4^{3x}=8^{x+4} $ is $\left\{x\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.