Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Review Exercises - Page 637: 17

Answer

$x=\dfrac{3}{7}$

Work Step by Step

Expressing both sides of the given equation, $ \left(\dfrac{1}{27}\right)^{x-1}=9^{2x} ,$ in the same base, the equation above is equivalent to \begin{align*} \left(\dfrac{1}{3^3}\right)^{x-1}&=\left(3^2\right)^{2x} \\\\ \left(3^{-3}\right)^{x-1}&=\left(3^2\right)^{2x} &(\text{use }\dfrac{1}{a^m}=a^{-m}) \\\\ 3^{-3x+3}&=3^{4x} &(\text{use }\left(a^m\right)^n=a^{mn}) .\end{align*} Since $a^x=a^y$ implies $x=y$, the equation above implies \begin{align*} -3x+3&=4x .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*}\require{cancel} -3x+3x+3&=4x+3x \\ 3&=7x \\\\ \dfrac{3}{7}&=\dfrac{\cancel7x}{\cancel7} \\\\ \dfrac{3}{7}&=x .\end{align*} Hence, the solution set of the equation $ \left(\dfrac{1}{27}\right)^{x-1}=9^{2x} $ is $x=\dfrac{3}{7}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.