Answer
$1.7404$
Work Step by Step
Using $\log_bx=\dfrac{\log x}{\log b}$ or the Change-of-Base Formula, the given expression, $
\log_{10} 55
,$ is equivalent to
\begin{align*}
&
\dfrac{\log55}{\log10}
.\end{align*}
Using a calculator, with $
\log55\approx1.74036
$ and $
\log10=1
$, then
\begin{align*}
\dfrac{\log55}{\log10}&\approx
\dfrac{1.74036}{1}
\\\\&\approx
1.7404
.\end{align*}
Hence, the approximate value of $
\log_{10} 55
$, is $
1.7404
$.