Answer
$f(x)=2^{2x+3}$
Work Step by Step
Substituting values of $x$ in the given function, $
f(x)=2^{2x+3}
$, results to
\begin{array}{c|c|c}
\text{If }x=-1: & \text{If }x=0 & \text{If }x=1
\\\\
f(x)=y=2^{2x+3} & f(x)=y=2^{2x+3} & f(x)=y=2^{2x+3}
\\
y=2^{2(-1)+3} & y=2^{2(0)+3} & y=2^{2(1)+3}
\\
y=2^{-2+3} & y=2^{0+3} & y=2^{2+3}
\\
y=2^{1} & y=2^{3} & y=2^{5}
\\
y=2 & y=8 & y=32
.\end{array}
Tabulating the results above gives the table below.
\begin{array}{c|c}
\hline
x & y
\\\hline
-1 & 2
\\\hline
0 & 8
\\\hline
1 & 32
\end{array}
Connecting the points $
\left(-1,2\right),
\left(0,8\right),
\text{ and }
\left(1,32\right)
$ with a curve gives the graph of $
f(x)=2^{2x+3}
$.