Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Review Exercises - Page 637: 34

Answer

$\dfrac{1}{2}\log_4 x+2\log_4 w-\log_4z$

Work Step by Step

Using the properties of logarithms, the given expression, $ \log_4\dfrac{\sqrt{x}\cdot w^2}{z} $, is equivalent to \begin{align*}\require{cancel} & \log_4 \left(\sqrt{x}\cdot w^2\right)-\log_4z &(\text{use }\log_b \dfrac{x}{y}=\log_b x-\log_b y) \\\\&= \log_4 \sqrt{x}+\log_4 w^2-\log_4z &(\text{use }\log_b (xy)=\log_b x+\log_b y) \\\\&= \log_4 x^{1/2}+\log_4 w^2-\log_4z \\\\&= \dfrac{1}{2}\log_4 x+2\log_4 w-\log_4z &(\text{use }\log_b x^y=y\log_b x) .\end{align*} Hence, the expression $ \log_4\dfrac{\sqrt{x}\cdot w^2}{z} $ is equivalent to $ \dfrac{1}{2}\log_4 x+2\log_4 w-\log_4z $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.