Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 4 - Section 4.1 - Integer Exponents and Scientific Notation - 4.1 Exercises: 143

Answer

$-\dfrac{125y^{3}}{x^{30}}$

Work Step by Step

Using the laws of exponents, the given expression, $ \left( \dfrac{-3x^4y^6}{15x^{-6}y^7} \right)^{-3} ,$ is equivalent to \begin{array}{l}\require{cancel} \dfrac{(-3)^{-3}x^{4(-3)}y^{6(-3)}}{15^{-3}x^{-6(-3)}y^{7(-3)}} \\\\= \dfrac{(-3)^{-3}x^{-12}y^{-18}}{(-3)^{-3}(-5)^{-3}x^{18}y^{-21}} \\\\= \dfrac{\cancel{(-3)^{-3}}x^{-12-18}y^{-18-(-21)}}{\cancel{(-3)^{-3}}(-5)^{-3}} \\\\= \dfrac{x^{-12-18}y^{-18+21}}{(-5)^{-3}} \\\\= \dfrac{x^{-30}y^{3}}{(-5)^{-3}} \\\\= \dfrac{(-5)^{3}y^{3}}{x^{30}} \\\\= \dfrac{-125y^{3}}{x^{30}} \\\\= -\dfrac{125y^{3}}{x^{30}} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.