Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 31 - Electromagnetic Oscillations and Alternating Current - Problems - Page 940: 89c

Answer

See steps Below.

Work Step by Step

The energy supplied by the emf device over one cycle is $ \begin{aligned} U_t & =\int_0^T P_{\varepsilon} d t=I \varepsilon_m \int_0^T \sin \left(\omega_d t-\phi\right) \sin \left(\omega_d t\right) d t=I \varepsilon_m \int_0^T\left[\sin \omega_d t \cos \phi-\cos \omega_d t \sin \phi\right] \sin \left(\omega_d t\right) d t \\ & =\frac{T}{2} I \varepsilon_m \cos \phi, \end{aligned} $ where we have used $ \int_0^T \sin ^2\left(\omega_d t\right) d t=\frac{T}{2}, \quad \int_0^T \sin \left(\omega_d t\right) \cos \left(\omega_d t\right) d t=0 . $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.