Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 15 - Oscillations - Problems - Page 438: 34

Answer

$x_m = 2.4 \,\text{cm}$

Work Step by Step

We could calculate the spring constant by \begin{align*} k=4 \pi^{2} \,\dfrac{m_{2}}{ T^{2}} = 4 \pi^{2} \,\dfrac{ 2 \,\text{kg}}{ (20\times 10^{-3} \,\text{s})^{2}} = 1.97 \times 10^{5} \,\text{N/m} \end{align*} Time of the collision $t$ equals one-fourth of period $T$ $$t = \dfrac{1}{4} T$$ Therefore, $\omega$ is $$ \omega = \dfrac{2\pi}{ T} = \dfrac{2\pi}{ 4 t} = \dfrac{\pi}{ 2 t} $$ Substitute with $\omega$ into the equation of the equilibrium position \begin{align*} x&=(1 ) \cos (\omega t+\dfrac{\pi}{ 2 } ) = (1) \cos (\dfrac{\pi}{ 2 } +\dfrac{\pi}{ 2 }) = - 1 \mathrm{cm} \end{align*} From the conservation law of energy, we find the velocity $v_2$ by \begin{gather*} m_1 v_1 = (m_1 +m_2) v_2 \\ v_2 = \left(\dfrac{m_1}{m_1+ m_2}\right) v_1 \\ v_2 = \left(\dfrac{4 \,\text{kg} }{4 \,\text{kg} + 2 \,\text{kg}}\right) (6 \,\text{m/s})\\ v_2 = 4 \,\text{m/s} \end{gather*} The mechanical energy $E$ is the summation of both energies $K$ and $U$ and $M = m_1+m_2 = 6 \,\text{kg}$ \begin{align*} E &= \frac{1}{2} M v^{2} + \frac{1}{2} k x^{2} \\ &= \frac{1}{2} ( 6 \,\text{kg}) ( 4 \,\text{m/s})^{2} + \frac{1}{2} (1.97 \times 10^{5} \,\text{N/m}) (0.01 \,\text{m})^{2}\\ &= 58 \,\text{J} \end{align*} Using this value of $E$ we could get the amplitude $x_m$ by \begin{align*} x_m=\sqrt{\frac{2 E}{k}} = \sqrt{\frac{2 (58 \,\text{J})}{1.97 \times 10^{5} \,\text{N/m}}} = \boxed{2.4 \mathrm{~cm} } \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.