Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 15 - Oscillations - Problems - Page 438: 39b

Answer

$34.19\;rad/s$

Work Step by Step

The angular displacement of the wheel can be written as $\theta(t)=\theta_0\sin(\frac{2\pi t}{T})$ Therefore, the angular velocity of the wheel is $\Omega=\frac{d\theta(t)}{dt}$ or, $\Omega=\theta_0\frac{2\pi}{T}\cos(\frac{2\pi t}{T})$ Now, $\theta_0=\pi$ and $\theta=\frac{\pi}{2}$ Therefore, $\sin(\frac{2\pi t}{T})=\frac{\theta}{\theta_0}=\frac{\pi}{2\pi}=\frac{1}{2}$ $\therefore\; \cos(\frac{2\pi t}{T})=\sqrt {1- \sin^2(\frac{2\pi t}{T})}=\sqrt {1-\frac{1}{4}}=\frac{\sqrt 3}{2}$ Therefore, $\Omega=\theta_0\frac{2\pi}{T}\cos(\frac{2\pi t}{T})$ or, $\Omega=\pi\times\frac{2\pi}{0.500}\times\frac{\sqrt 3}{2}\;rad/s$ or, $\Omega=34.19\;rad/s$ Therefore, the angular speed at displacement $\frac{\pi}{2}\;rad$ is $34.19\;rad/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.