Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 15 - Oscillations - Problems - Page 438: 47

Answer

$$0.366 \mathrm{s} $$

Work Step by Step

We use Eq. $15-29$ and the parallel-axis theorem $$I=I_{\mathrm{cm}}+m h^{2}$$ where $h=d .$ For a solid disk of mass $m,$ We know that the rotational inertia about its center of mass will be $$I_{\mathrm{cm}}=m R^{2} / 2 .$$ Therefore, $$ T=2 \pi \sqrt{\frac{m R^{2} / 2+m d^{2}}{m g d}}=2 \pi \sqrt{\frac{R^{2}+2 d^{2}}{2 g d}}=2 \pi \sqrt{\frac{(2.35 \mathrm{cm})^{2}+2(1.75 \mathrm{cm})^{2}}{2\left(980 \mathrm{cm} / \mathrm{s}^{2}\right)(1.75 \mathrm{cm})}}=0.366 \mathrm{s} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.